Finally, a Fusion Reaction Has Generated More Energy Than Absorbed by The Fuel

In August, physicists at Lawrence Livermore National Laboratory’s (LLNL) National Ignition Facility (NIF) discovered that they may have finally crossed the barrier of “ignition” of inertial confinement fusion. They have now verified it. They experimented with extracting more energy from the fusion reactor than was originally required to fuse the material.

The event released 1.3 Megajoules of fusion energy – an eight-fold improvement on the test conducted this past spring, and 25 times better than the record-breaking experiments in 2018. The findings are published in the journal Nature.

“In these experiments we achieved, for the first time in any fusion research facility, a burning plasma state where more fusion energy is emitted from the fuel than was required to initiate the fusion reactions, or the amount of work done on the fuel,” co-lead author Annie Kritcher said in a statement.

The fusion approach at the NIF is known as Inertial Confinement Fusion. This is different from what is being investigated in fusion reactors such as Tokamak and Stellarators. There the energy is extracted by continuous flow from the hot fusing plasma. In Inertial confinement fusion, energy is instead extracted from discrete events. Using the world’s most energetic laser, small pellets of fuel are ignited by heating and compressing, creating fusion and releasing a huge amount of energy that can be turned into electricity.

The whole facility is the size of three football fields but the laser target, once heated, creates a hot spot the diameter of a human hair. In that confined space, the fusing pellet releases 10 quadrillion watts of fusion power for 100 trillionths of a second.

The breakthrough was possible thanks to a much deeper understanding of what is actually happening in that confined space. Models were tweaked and tested, the length of laser pulses was played with, as well as the design of the hohlraum – the enclosing radiation cavity around the pellet.

“There is much work yet to be done and this is a very exciting time for fusion research,” Kritcher said. “Following this work, the team further improved hohlraum efficiency in both platforms, increasing hot spot pressure which resulted in higher performance and the record 1.35 MJ HYBRID-E experiment.”

Even though it’s a fantastic milestone, the team considers this fusion achievement a “basecamp.” From here, they plan to improve and build on the current approach, with the goal to reach even higher pressures and thus even higher energy released from this type of fusion.

Tom

Related Posts

Flat-Earther Offered $100K To Prove Earth Was Round, Now Regrets It

One YouTuber – Wolfie6020, who is a professional pilot, successfully completed a $100,000 challenge thrown out by a Flat Earther called Flat Out Hero. However the flat-earther…

A substance that can “remember” its entire past like a brain is discovered by scientists

Scientists have discovered the first-ever physical material capable of “remembering” its entire history of physical stimuli, similar to that of a brain. The team from the École…

Two Earth-like Planets Discovered in Habitable Zone

Two Earth-like planets have been discovered by astronomers in the habitable zone of their planetary system less than sixteen light-years away from Earth. A solar system’s habitable…

Comet Last Seen by the Neanderthals Approaches Earth

A comet last seen by the Neanderthals is approaching Earth and could be seen by the naked eye sometime at the end of January and the beginning…

Satellites Are Falling Out Of Their Orbits At Alarmingly High Rate And Sun Is To Blame

It is a well-known fact that satellites in near orbit above Earth are susceptible to the residual atmosphere’s drag, which progressively slows the spacecraft and finally causes…

The 1,000-light-year-wide cosmic bubble around Earth

We are in the middle of a bubble of stars being made by the Milky Way. As this artist’s concept shows, the Local bubble is driving the…

Leave a Reply

Your email address will not be published. Required fields are marked *